Multigrid Convergence of Geometric Features
نویسنده
چکیده
Jordan, Peano and others introduced digitizations of sets in the plane and in the 3D space for the purpose of feature measurements. Features measured for digitized sets, such as perimeter, contents etc., should converge (for increasing grid resolution) towards the corresponding features of the given sets before digitization. This type of multigrid convergence is one option for performance evaluation of feature measurement in image analysis with respect to correctness. The paper reviews work in multigrid convergence in the context of digital image analysis. In 2D, problems of area estimations and lower-order moment estimations do have "classical" solutions (Gauss, Dirichlet, Landau et al.). Estimates of moments of arbitrary order are converging with speed $f(r)=r^{-15/11}$. The linearity of convergence is known for three techniques for curve length estimation based on regular grids and polygonal approximations. Piecewise Lagrange interpolants of sampled curves allow faster convergence speed. A first algorithmic solution for convergent length estimation for digital curves in 3D has been suggested quite recently. In 3D, for problems of volume estimations and lowerorder moment estimations solutions are known for about one-hundred years (Minkowski, Scherrer et al.). But the problem of multigrid surface contents measurement is still a challenge, and there is recent progress in this field. 1 Centre for Image Technology and Robotics, The University of Auckland, Tamaki Campus, Auckland, New Zealand You are granted permission for the non-commercial reproduction, distribution, display, and performance of this technical report in any format, BUT this permission is only for a period of 45 (forty-five) days from the most recent time that you verified that this technical report is still available from the CITR Tamaki web site under terms that include this permission. All other rights are reserved by the author(s). Multigrid Convergence of Geometric Features
منابع مشابه
Convergence Analysis of Geometric Multigrid Methods for Solving Data- Sparse Boundary Element Equations Convergence Analysis of Geometric Multigrid Methods for Solving Data-sparse Boundary Element Equations
The convergence analysis of multigrid methods for boundary element equations arising from negative-order pseudo-differential operators is quite different from the usual finite element multigrid analysis for elliptic partial differential equations. In this paper, we study the convergence of geometric multigrid methods for solving large-scale, data-sparse boundary element equations arising from t...
متن کاملConvergence Analysis of Geometric Multigrid Methods for Solving Data-Sparse Boundary Element Equations
The convergence analysis of multigrid methods for boundary element equations arising from negative-order pseudo-differential operators is quite different from the usual finite element multigrid analysis for elliptic partial differential equations. In this paper, we study the convergence of geometric multigrid methods for solving large-scale, data-sparse boundary element equations arising from t...
متن کاملConvex Shapes and Convergence Speed of Discrete Tangent Estimators
Discrete geometric estimators aim at estimating geometric characteristics of a shape with only its digitization as input data. Such an estimator is multigrid convergent when its estimates tend toward the geometric characteristics of the shape as the digitization step h tends toward 0. This paper studies the multigrid convergence of tangent estimators based on maximal digital straight segment re...
متن کاملMultigrid convergence of discrete geometric estimators
The analysis of digital shapes require tools to determine accurately their geometric characteristics. Their boundary is by essence discrete and is seen by continuous geometry as a jagged continuous curve, either straight or not derivable. Discrete geometric estimators are specific tools designed to determine geometric information on such curves. We present here global geometric estimators of ar...
متن کاملAdvances in Visual Computing, Second International Symposium, ISVC 2006, Lake Tahoe, NV, USA, November 6-8, 2006 Proceedings, Part I
Discrete geometric estimators aim at estimating geometric characteristics of a shape with only its digitization as input data. Such an estimator is multigrid convergent when its estimates tend toward the geometric characteristics of the shape as the digitization step h tends toward 0. This paper studies the multigrid convergence of tangent estimators based on maximal digital straight segment re...
متن کامل